
Journal of Applied Mechanics and Technical Physics, Vol. 39, No. 5, 1998 

L I N E A R  T H E O R Y  O F  T H E  P R O P A G A T I O N  O F  I N T E R N A L  W A V E  B E A M S  

I N  A N  A R B I T R A R I L Y  S T R A T I F I E D  L I Q U I D  

Yu. V.  Kis tov ich  and Yu.  D. Chashechkin UDC 551.466.81 

Beams of  harraonic internal waves in a liquid with smoothly changing stratification are calculated 
in the Boussinesq approzimation taking into account the effects of diffusion and viscosity. 
A procedure of local reduction of the beam in a medium with an arbitrary smooth stratification 
to the case of an exponentially stratified liquid is constructed. The coefficient of  energy losses in 
the case of  beam reflection on the critical level is calculated. Parameters of  internal boundary 
flows with split scales of  velocity and density that are formed by a wave beam on discontinuities 
of the buoyancy frequency and its higher derivatives are determined. 

I n t r o d u c t i o n .  Two types of internal waves are traditionally distinguished: waves localized on density- 
discontinuity layers and volumetric waves, which propagate over the entire thickness of the liquid [1]. Their 
properties are studied in the  approximation of perfect [2] or viscous [3] liquids. In a medium with an exponential 
distribution of density, the  waves propagate along radius-vectors whose slope to the horizon 0 is determined as 
the ratio of the wave frequency co to the buoyancy frequency N: sin 0 -- co/N. In a medium with an arbitrary 
stratification, regular waves exist in regions where co < N .  As the critical level co = N is approached, the wave 
beam deflects from the vertical, the  wave vectors become horizontal, the  further propagation of the waves is 
impossible, and beam reflection occurs [4]. 

Allowance for viscosity and diffusion substantially changes the  description of internal waves. In this 
case, a compact source generates a field of internal waves that  is regular over the  entire space [3]. Significant 
disturbances are concentrated in narrow wave beams tha t  contain one and a half to two spatial oscillations. 
Asymptotic solutions are in agreement with measurements and observations of internal waves under laboratory 
conditions even near the source [5]. 

When internal-wave beams axe reflected from a flat rigid surface, boundary  flows with split scales of 
velocity and density arise owing to viscosity and diffusion effects [6-8]. A marked portion of energy of the 
incident-wave beam is converted to a boundary flow periodic in t ime [9]. 

In most cases, models of internal waves are constructed for smooth distributions of density [10]. Under 
natural conditions, a fine s tructure of the medium with expressed discontinuity layers of density and its 
derivatives (up to high-order derivatives) is observed. In this connection, it is of interest to study the effect of 
discontinuity in the gradient of density and its higher derivatives (in the  absence of a j ump  in density) on the 
propagation of internal-wave beams taking into account the effects of viscosity and diffusion and to calculate 
the corresponding disturbances originating on inhomogeneities of stratification. By analogy with [8, 9], the 
wave beam can be expected to transform into different forms of spatially localized motions with nonwave 
natural scales. 

The purpose of the present paper is a dynamic consideration of the problem of the propagation of 
internal-wave beams in an arbitrarily stratified medium taking into account the dissipative effects (viscosity 
and diffusion), wave reflection on the critical level, a calculation of energy losses due to this reflection, and a 
study of propagation of the beams in the vicinity of density derivative discontinuities in the medium. 
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1. G o v e r n i n g  E q u a t i o n s .  The following mathematical  formulation of the problem of the propagation 
of wave beams in a med ium with an arbitrary stratification is used. Let an incompressible viscous liquid with 
an arbitrary stratification of reduced salinity so(z), which includes the salt compression coefficient of the 
diffusing salt component  be located in a gravity-force field with acceleration 9 opposed to the vertical axis z. 
The dependence of the undis turbed density on the vertical coordinate z is po(z) = p00[1 + s0(z)]. We study a 
two-dimensional problem, in which, besides z all quantities depend only on the horizontal coordinate x. We 
consider monochromat ic  waves with a t ime dependence of the form e -i~at, which is omi t ted  in what follows. 

In this case, in the Boussinesq approximation we can write the linearized system of equations [13] that 
describes the motion of the  liquid: 

1 0 P  1 0 P  
-iwv~: = - -  + vAvz, - i w v z  = - -  + vAvz  - s9, 

poo Oz poo Oz 

d so Ovz Or, 
- i w s  + v, ~ = DAs ,  Oz + ~ = O. 

Here vz and vz are components  of the velocity of liquid particles, P and s are the variable pressure and 
salinity, v and D are the kinematic  viscosity and the salt diffusivity, respectively, and A = a2 / az  2 + a2/Oz 2 
is a two-dimensional Laplacian. 

This system leads to the following equation for the vertical displacements of the particles h, which are 
related to the vertical velocity as Vz = - i w h ,  

- iDA)( o - i ,ZX)Z  - lV (z) h - -  0 ,  ( 1 . 1 )  

where N2(z) = -(9[Oo(Z))(dpo(z)[dz) is the square of the buoyancy frequency, which generally depends on 
~ ~  

Beams of internal waves from a localized source propagate in four directions [3]: right and up, right 
and down, left and up, and left and down. Without  limiting the generality, we consider only beams that  
propagate to the  right, for which the horizontM component  of the wave vector is positive. This allows us to 
seek a solution of Eq. (1.1) in the  form 

= J k)e dk. (1.2) h 
0 

Substituting this expression into (1.1), we obtain the following ordinary differential equation for f ( z ,  k) 
(differentiation is performed only with respect to z): 

u D f  (e) + [iw(v + D) -- 3uDk2]f (4) -- [w 2 + 2/w(v + O)k 2 

-- 3 v D k l l f  (2) + [to 2 - N2(z) -I" ioa(v + D)k 2 - vDk4 l f  -'- 0, (1.3) 

The properties of this equation for the ease of an exponentially stratified medium are studied in [7-9]. The 
Arabic numerals in brackets denote the order of derivatives. 

Equation (1.3) is a singularly disturbed sixth-order differential equation (a small coefficient at the 
highest derivative). For u = D = 0, it transforms into a traditional second-order equation tha t  describes 
internal waves propagating in a medium without dissipation [2, 3]. The  presence of nonzero viscosity and 
diffusion lead to decay of waves because of energy dissipation and entrainment  of undis turbed liquid into 
wave motion, and also because of the formation of a new type of motion: localized boundary layers with 
various scales of spatial variation of velocity and density. The  thickness of these boundary layers tends to zero 
as the kinetic coefficients decrease [6, 7]. 

With allowance for that ,  the linearized equation (1.3) can be represented in the following operator 
forms: 

A 

L4Lu, f = L2gbf  = o, 

where L4 and Lb are singularly disturbed fourth-order operators and L2 and Zw are regular second-order 
operators. The  general solution of Eq. (1.3) can be represented as a linear combination of solutions of the 
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equations 
Lwf = O, Lbf = O, (1.4) 

where the solutions of the first equation are traveling internal waves and the solutions of the second equation 
are spatially localized periodic flows, which can be called internal boundary flows by analogy with [7]. 

The operators introduced above are sought as expansions in powers of the small parameters v and D. 
Confining ourselves to the first power, we obtain 

L4 = Lb = vDCO 4 + i(v + 3)CO 2 - -  r i ( / /+  D) k2(N 2 + o02) ' 
r 

]-'2 = CO2 

L,o = 0 2 + 

2iCvw+ D) ka(/~a),0 + ka(# 2 i(v ~+ D)[(#2). + ka(l + #2)a]}, 

2i(v + D) kZ(/~a),0 + k2{# , + i(v + D)[(/~2). _ k2(l + .2)2]} 
03 Ca.) ' 

/~2(z) = N2(z) - off d 
w2 , (9 -- dz 

(the prime denotes derivatives with respect to z). The operators L4 and Zb coincide in the first order of these 
expansions, but  generally they are not equal. All subsequent results are asymptot ic  for the small parameters 
v and D. Conditions of smallness will be formulated below in Sec. 2. 

As follows from (1.3), the  function [ (z ,  k) should have continuous derivatives up to the fifth order 
inclusive for a piecewise-continuous function N(z). This requirement is the boundary condition for propagation 
of beams of internal waves in the absence of external obstacles and surfaces of discontinuity of the density 
gradient and its higher derivatives. 

If N(z)  is a smooth function, the propagation of the beams is described only by the first equation 
of (1.4), and satisfaction of these boundary conditions is a consequence of the smoothness of N(z) [this 
is proven by differentiation of the  first equation of (1.4)]. If N(z)  has discontinuities or discontinuities of 
derivatives, it is not possible to describe the  propagation of the beams only by the  first equation of (1.4), and 
the second equation has to be used. Physically, this means that  wave-induced internal boundary flows, whose 
thickness depends on the  kinetic coefficients and wave frequency, arise in the depth of the liquid at the levels 
of discontinuity of the function N(z)  or its derivatives. 

Thus, the problem of the  propagation of beams of internal waves in an arbitrarily stratified fluid is 
divided into three main problems: propagation in a medium with a smooth variable stratification N(z) > ~, 
reflection from the critical level determined by the condition zc: N(zc) = o~, and interaction of the beam with 
discontinuities of N(z)  and its derivatives. 

2. P r o p a g a t i o n  o f  t h e  B e a m s  o f  I n t e r n a l  Waves .  An asymptotic solution of the equation 

f,, + 2i(v + D) ka(#2) , f  + k2(#  a + i(v + D)[(#2),, _ k2(1 + ,2 )21}  / = 0, (2.1) 
t o  k o~ I 

which describes the propagation of internal waves, can be obtained in the case of a slowly varying function 
N(z) where the characteristic beam width and the wavelength are much smaller than the  scale of variation of 
the buoyancy frequency AN = ]dln N(z)/dz] -a. This is equivalent to the case where the spatial spectrum of 
the beam f(z, k) is localized near a certain value/co that  characterizes the wavelength in the beam, and the 
spectrum width Ak characterizes the beam width. These quantities should satisfy the inequalities koAN >> 1 
and AkAN >> 1. 

If additional conditions k0 2 << w/(v + D) and (Ak) 2 << w/(v + D) are satisfied, the asymptotic solution 
of Eq. (2.1) can be sought in the  form f(z, k) = e i~r Substi tuting this expression into (2.1), we obtain 
the equation for the eikonal o'(z, k)" 

i# # 25k i~ a,2 _ _ _  + (,2),  o, _ #2 _ __ [(#2),, _ k2(1 + #2)2] = 0, (2.2) 
k to to 

where ~ = v + D. In turn,  in the solving of (2.2), the eikonal is expanded in a power series of the kinetic 
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Fig. 1. Geometry of the beam in the laboratory (x, z) and 
attendant (p, q) systems of coordinates. 

coefficients. Retaining terms of the first order of smallness ~' = a~ + (?~k2/w)a~ and substituting this into 
(2.2), we obtain the following system of equations: 

, ,  �9 _ _  [ (g2),,. 
~2 ia~k p2 _. 0, 2t70~1 -- ~ + 2(#2)'k cr~ + i [(1 + ,2)2 ~ ] = 0. (2.3) 

Assuming that Gr~ o = ao + a l /k  + . . . ,  a~ = bo + bl/k + . . . ,  we find the coefficients ai and bi from (2.3), and, 
thus, obtain the final expression for f (z ,  k): 

where the value A = +1 corresponds to the beam propagating to the fight and down, and A = -1  to the 
beam propagating to the fight and up. 

It is convenient to represent the field of the beam in an attendant system of coordinates (p, q) where 
the q axis is tangent to the beam trajectory at the point (xl ,z l) ,  and the p axis is normal to it (Fig. 1). The 
relation between the coordinate systems (z, z) and (p, q) is given by the formulas 

= - x l  =psinO+qcosO, z - z l  =-pcosO+qs inO,  cotO=p(z l ) .  

Performing this transformation of coordinates in (2.4) and using (1.2), we obtain the following expression for 
the displacements in the beam: 

h ( p , q )  = Jn ~Ott~) " (2.5) 
V 

Here Ao(k) is a spectral function determined by the properties of the source of waves located at the point So 
(see Fig. 1) and Q(z) is the natural current longitudinal scale of the beam given by the formula 

#(~) ~ [i + j,2(~,)]2 
qCz) = [1 +.2(z)13/2 j .(z,) dz'. (2.6) 

7-O 

Its value in an arbitrarily stratified medium differs from the geometric length of the beam 
Z 

= / + ~t2(z t) dz' 
zo 

and is connected with the latter by the integral relation 

1 Q(z) - L-~(~j ] L"(z') dz,, 
�9 o ~/L'~ (z ' )  - 1 
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where the prime at L(z) denotes the derivative with respect to the argument.  It is easily seen that  for 
N(z) = const we have Q(z) = L(z). 

In an exponentially stratified fluid with a constant buoyancy frequency Nz = N(zl), a source located 
at the point (p = 0, q = - L z )  (the beam is considered in the a t tendant  system of coordinates shown in Fig. 1) 
radiates a beam whose field, in accordance with [12], has the form 

{ vk3(L1 + q ) }  dk. (2.7) h(p,q) = Az(k) exp ikp 2N1 cos 0 
0 

A comparison of formulas (2.5) and (2.7) shows that  the characteristics of the wave beam radiated at the 
point So in a medium with a prescribed stratification N(z) in the vicinity of the observation point (zz, zl) are 
the same as for a beam in a medium with a constant buoyancy frequency N(zz) radiated by a source of the 
same type located at the  point S at a distance Q(zl) from the observation point [Q(z) is defined by formula 

(2.6)1 with an ampli tude increased by a factor of ~/it(zo)/it(zz). 
The study conducted allows one to reduce the problem of the propagation of beams of internal waves 

in a medium with an arbitrary smoothly varying stratification to the case of a constant buoyancy frequency, 
which has been studied in detail theoretically [3, 5] and experimentally [12]. 

3. R e f l e c t i o n  on  a C r i t i c a l  Level .  We consider the propagation of a beam of internal waves near 
the critical level z = zc, at which the local buoyancy frequency of the medium is compared with the wave 
frequency w = N(zc). For z > zc the value of p2(z) becomes negative and, in accordance with (2.4), each 
spatial harmonic of the beam will decay exponentially. It follows from the conditions of continuity of the 
function f(k, z) and its derivative for z = z, that ,  in addition to the incident beam, two more beams arise: a 
reflected beam and a beam part ly penetrat ing into a nonwave zone. 

It follows from the general reasoning, taking into account (1.2) and (2.4), that  for vertical displacements 
in the incident hi(x,z), reflected hr(x,z), and t ransmit ted ht(x,z) beams we can write the following 
expressions: 
for z < zc, 

r / p k 2 ( 1  - 3 I t ' )  " hi(x,z) : 1 A(k) exPL T__~ ] exp  { - i k  f [it -it'k2(1 + it2)2 

. ( 3 . 1 )  

h,(x,z) dk; 

for z > zc, 

~ u l f  z ff, k2(l+it2)21 . rivk2(1- 3it')l exp { _ kf  [litl + az}e' Xdk. h t (x , z )  "= v , . , u  C (k )  exp l ~op "~ "] z, ~_xa~f '] 

It is required to express the  spatial spectra B(k) and C(k) of the  reflected and t ransmit ted beams in terms 
of the spectrum A(k) of the  incident beam. 

The  solutions of (3.1) diverge for it(z,) = 0. To match the asymptotics,  exact solutions of Eq. (2.1) for 
z ~ zc are found and matched with each other. 

The function N(z) for z ,-, zc can be represented as a Taylor series expansion with two terms left: 

N(z)=w 1 AN ] '  "AN AN = N~z) dz ~=z: (3.2) 

where AN is the characteristic scale of variation of N(z) near the critical level. Substi tut ing (3.2) into (2.1), 
we obtain the equation for f(z, k) 

f" 4if'k----~2wAN f ' -  k2[2(zszc) AN ibk---~2w [1 4(ANZC).] } f : 0 ,  
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which, by means of the subst i tut ions 

I = exp t 5 - K ;  y ' 

reduces to the Airy equation for the introduced function g (in this equation, the quadratic terms -,-5 2 are 

dy 2 AN yg = 0. (3.3) 

Taking into account tha t  the  incident wave decays as z increases and the reflected wave decays as z decreases, 
we write solutions of Eq. (3.3) as 

(') sis (2) s12 ~ (  2i?~k2)i 2 ,  gi = ax/~H1/a[e(-y) ], g, = 3vf~H1/s[e(-y) ], e = 1 + (3.4) 
o.., AN 

u(1) r.r(2) where "'1/3 and "'l/S are Hankel functions of the first and second kind. For the t ransmit ted  wave, which also 
decays as z increases, we have 

gt = 7v/ffKlls[eyS/2], (3.5) 

where K1/s is a MacDonald function that  differs from the one commonly used [14] by the absence of the factor 
lr/2. 

Ensuring the continuity of the functions (gi + gT) and gt for z = zc and their first derivatives and 
retaining terms up to the first degree of ~ inclusive, we obtain 

3 = ote-iTtlS, "7 = ote-ixl6. (3.6) 

Substi tuting (3.2) into (3.1) and conducting integration, performing an asymptot ic  expansion for 
leyS/21 >> 1 in (3.4) and (3.5) and comparing the resultant expressions, we obtain the relationship between 
the quantities {a, 3, 7} and {A(k), B(k) ,  C(k)}: 

tr= ~f~k a(k)e-i~OeSiXD 2, 3= ~ k  B(k)e-Si'D 2, 7 = ~ / ~ C ( k ) ,  

where ze 
~o = k f [. -i~'k2(l~; + P2)21] dzk 

zo 

Together with equalities (3.6) this allows us to find 

B(k) = A(k) e -i*o e i'q2, C(k) = A(k) e -i*o e i'r/4. (3.7) 

It follows from (3.7), in particular,  that ,  being reflected on the critical level, the beam preserves its structure 
and increases the phase by ~r/2. 

The beam t ransmi t ted  into the nonwave zone z > zc transfers energy tha t  transforms into heat. The 
technique for calculating the  coefficient of energy losses 77 equal to the  ratio of the energy flux passing to the 
nonwave zone to the energy flux in the incident beam is similar to the calculation of the losses of energy in the 
case of reflection from a rigid plane, which was described in detail in [6, 7]. Conducting analogous calculations, 
We obtain oo oo 0 (/ / /  ) 

r / =  wsin~lr/3) klA(k)12e-'~(k)dk ( IA(k)12/k)e-~'(k)dk ' 
0 0 

where 

Estimation 
conditions (where N 

r Dk s)c(1+~2)2 
d z  I . 

w p 
zo  

of the coefficient of energy losses for the case 
--- 1 sec -1,  dN/dz .., 0.1 sec-1/cm,  and I = 

of salt stratification under laboratory 
10 cm) and in the upper atmosphere 
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(the period of buoyancy Tb ~ 30 min, dTb/dz ~ 5 min/km,  and l ~ 1 km) shows that  its value is r / ~  10% in 
the first case and r / ~  0.03% in the second case. Under real conditions, it can be expected in most cases that 
its value amounts to several percent taking into account the turbulent  character of motion, which involves an 
additional decay of the wave processes. 

4. I n t e r n a l  B o u n d a r y  F lows  on D i s c o n t i n u i t i e s  of  D e r i v a t i v e s  o f  Dens i t y .  If the buoyancy 
frequency is a rather smooth function of the z coordinate (it is continuous together with its derivatives up 
to the fifth order inclusive), the  propagation of the wave beams is described by the second-order equation 
(2.1). When the buoyancy frequency (or its derivatives not higher than the fifth order) is discontinuous, then 
to ensure the required smoothness  of the spectral function, it is necessary to use solutions of the singularly 
disturbed equation 

=-- , , D I ' '  + i,,,(,, + z )I" _ + + + = o. Lbf 
I .  t.o J 

Its solutions, like those of the  wave equation (2.1), can be represented in the eikonal form 

fv  = e ia~, f o  = ei~D, 

], 4 _ 1 + / [ 1  i D + v  ] , + i  + i + D + 2) = + - + 2) 
cry = Iv [ + 4 v -- D lD I. 4 D v 

(4.1) 

(the prime denotes the derivative with respect to the z coordinate). Solutions (4.1) include the internal viscous 

and diffusion scales lv = X/~[oa and lD = V/~-)w, which characterize the thickness of the split boundary 
flow. Exactly these scales arise in the problem of reflection of internal waves from a rigid wall [8]. The ratio 
of these scales is de termined by the values of viscosity and diffusivity (the Schmidt number) and does not 
depend on time, as in the  problem of the formation of a diffusion-induced boundary flow on an impermeable 
wall [15]. 

Without limiting generality, we can assume that  the  discontinuity of the buoyancy frequency (or its 
derivatives) lies at the level z = 0. Let the buoyancy frequency be a smooth function Nl(z) below this level 

and a smooth function N2(z)  above this level, and #i(z)  = x /N~(z)  - w 2 ] w .  
In the vicinity of the  discontinuity of the buoyancy frequency (or its higher derivative), the flow pattern 

that is formed when the  wave beam is incident onto this discontinuity from below includes the incident beam 
itself, a beam t ransmi t ted  upward,  the beam transmitted downwaxd, and two pairs of boundary flows (below 
and above the discontinuity) with split scales of velocity and density (salinity) variation. The  spatial structure 
of the wave beams is described by formulas (1.2) and (2.4), and that  of the  boundary flows by formulas (4.1). 
Thus, the spectral functions of the  complete field can be writ ten as 

�9 " " r ~  ia2v ,'~ i~r , ' ,  D f = Ae 'a+ + Be 'a?  + Dlue  urlv + D1D eio'lo, z < O, f = Ce  i~r2 + x.,2ue + / J2De  * , z > 0. 

Here A, B, and C axe the  ampli tudes of the incident, t ransmit ted,  and reflected waves, D1v and D2~ are the 
amplitudes of the velocity boundary  layers above and below the boundary of the  discontinuity, and DID and 
D2D are the ampli tudes of the  density boundary layers. In accordance with the previous results, the eikonals 
are expressed as 

- '  + k (l v + 12D)~'~2, 0"~2 = ~a2, + k2(l 2 + lZo)qa22, 

, 1+ i (1  , 1 + i (1 + ik212v~b,), o'2v = + ik212v~l,2) , 
Crlv = Iv Iv 

O.~D = 1 + i (1 -- ik212D~bl), O'~D = 1 + i (1 -- ik~12D~b2). 
l o  lo  

The prime denotes the derivative with respect to the z coordinate,,  and the following designations are 
introduced: 

qO~, = q:k#, + i#--!11 qo~2 = + ik(l + #21)2 (i + 3#4)#] i#~ 
2#1 ' 4/21 4#~ ' ~021 = --k#2 + --'2#2 
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/k(1 +/z22) 2 (1 + 3/z4)/z~ 1 u + D 1 u + D 
 22= r  - -  ( 2 + , ] ) ,  - -  

4/z2 4/~2 ~ ' 4 u -  D 4 ~ D 

tn these equations, the functions/zi(z) and their derivatives are taken at the point z = 0. 
The continuity of the function f and its derivatives up to the fifth order inclusive leads to the following 

sixth-order algebraic system for determining the unknown amplitudes: 

(eiO'l)(n)B_ (eia2)(")C + (eial")(n)Dlu + (eialD)(n)DID - -  (eia2,,)(n)D2 v - -  (eia2D)(n)D2 D 

= --( eia+)(n)A0, n = 0, 1 , . . . ,  5, (4.2) 

0 
Here in  ) is the corresponding derivative with respect to z f o r z  = 0 a n d  A0 = A e x p ( i / a + ~ d z ] .  The 

z0 
elements of the matrix of system (4.2) and the elements of the vectors of the right-hand sides were written 
as finite expansions with respect to the degrees of the small parameters lu and lo. A solution of the system 
of equations (4.2) was sought as an expansion of the amplitudes B, C, DI~, D2~, DiD, and D2D in series 
in powers of lu and ID. For simplicity, below we present the solutions of this system in the absence of salt 
diffusion: 

B ~- k(/s - / ~ 2 )  - (i12)(,~1~, - ,~21,~) ic C = 2k~------21 id 
A 2A 2' A 2A2' 

ia ( t + i)b ia (t + i)b 
D,~ = ~-~ + 8 ~ '  D2u = --4A "{- 8 ~ '  

where 

A = k( ,~  + ~2) + ~ ' , /~  

3 , ?  

k4( ,}  2 2 2 
- - 

, l ( ,  2 - 

+ 

,~' 
~ 2 / J  ' 

Pl P2 " 

It follows from these formulas that the character of the flow that arises significantly depends on the 
fine structure of the density field of the medium. If the buoyancy frequency and/or  its first derivative are 
discontinuous, the amplitude of the reflected beam has the same order as the amplitude of the incident beam, 
whereas the amplitude of the boundary flow is small and is determined by the viscosity of the medium (--~v). 
If the buoyancy frequency and its first derivative are continuous but its second derivative is discontinuous, 
then both the reflected beam and the boundary layer have the same order of smallness --.v. If only the third 
derivative of the buoyancy frequency is discontinuous, the reflected beam has order of smallness ~u,  and for 
the boundary flow it is ..,u 3/2. Finally, if the buoyancy frequency is continuous together with its derivative 
up to the third, there are neither reflected beam nor internal boundary flow in accordance with the results of 
Sees. 1 and 2. 

Thus, the direct calculations show that, on discontinuities of the density gradient, the transmitted 
beam of internal waves does not simply scatter but forms specific internal boundary flow with split scales 
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of velocity and density variation. The ratio of the fraction of energy that remains in the wave field to the 
one that passes to the boundary flow changes, depending on the character of discontinuity. The degree of 
localization of the boundary flow increases with increase in the wave frequency. 

In the linear approximation, the incident wave and the flows induced by it do not interact with one 
another. Under real conditions, because of the nonlinearity of the equations of motion and the equation 
of state, this interaction occurs and generates new forms of motion with their own characteristic scales. 
Qualitatively, we can identify at least two classes of these scales: a macroscale, determined by the geometry 
of the wave beam and a microscale, determined by the minimum kinetic coefficient of the problem (in this 
case, by the diffusivity) and the wave frequency. The stage of destruction of nonlinearly interacting internal 
waves is preceded by the formation of small-scale high-gradient interlayers (discontinuities of stratification 
[16]), which is indicative of the importance of the effects of scale splitting in the general wave dynamics. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-05- 
64004). 
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